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In the study of periodic media, conditionally convergent series are frequently encoun-
tered and their regularization is crucial for applications. We derive an identity that
regularizes two-dimensional phase-modulated Eisenstein series for all Bravais lattices,
yielding physically meaningful values. We also obtain explicit forms for the phase-
modulated series in terms of holomorphic Eisenstein series, enabling their closed-form
evaluation for important high symmetry lattices. Results are then used to obtain rep-
resentations for the related double Schlömilch-type sums, which are also given for all
Bravais lattices. Finally, we treat displaced lattices of high symmetry, expressing them
in terms of origin-centered lattices via geometric multi-set identities. These identities
apply to all classes of two-dimensional sums, allowing sums to be evaluated over
each constituent of a unit cell that possesses multiple inclusions. Published by AIP
Publishing. https://doi.org/10.1063/1.5026567

I. INTRODUCTION

The modeling of periodic structures often requires the evaluation of infinite sums over the point set
of an underlying lattice.1 There is considerable interest in both the correct numerical evaluation and the
analytical study of such sums, as they feature in a wide range of applications, from the calculation of
effective material parameters2–15 to the study of band structures for a periodic composite material.12,16

In these contexts, the governing equation is the Helmholtz operator or Laplace’s equation from which
many different classes of lattice sums can appear. In this paper, we examine two classes of lattice sums
that arise frequently in two-dimensional structured media. These are the phase-modulated Eisenstein
series

G(m)
n (τ)=

∑′

p

e−imϕp

Rn
p

(1)

and the double Schlömilch-type series

Sl,m,n(u; τ, a)=
∑′

h

Jl(Khu)
Kn

h

eimψh , (2)

where J l(z) is the Bessel function of the first kind and u is an arbitrary real constant. Coordi-
nates of the two-dimensional lattices over direct and reciprocal space are given in polar form,

(Rp, ϕp) and (Kh, ψh) respectively, defined for example by (Rp =

√
x2

p + y2
p, ϕp = tan−1(yp/xp)). In

turn, the lattices are defined by the two parameters a and τ. Summation is over the double indexes
p and h ranging over the entire two-dimensional lattice in direct and reciprocal space, with the

a)parryyu@post.bgu.ac.il

0022-2488/2018/59(7)/072902/20/$30.00 59, 072902-1 Published by AIP Publishing.

https://doi.org/10.1063/1.5026567
https://doi.org/10.1063/1.5026567
https://doi.org/10.1063/1.5026567
https://doi.org/10.1063/1.5026567
mailto:parryyu@post.bgu.ac.il
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5026567&domain=pdf&date_stamp=2018-07-17


072902-2 Chen, Smith, and McPhedran J. Math. Phys. 59, 072902 (2018)

superscript ′ denoting exclusion of singular terms, for example when Rp = 0. See Sec. II for full
definitions.

The two infinite sums are intimately linked since the double Schlömilch-type sums (2) can
be expressed in terms of phase-modulated Eisenstein series (1) via the Fourier transform, moti-
vating their joint consideration in our paper. However, Eisenstein series also independently feature
in effective medium calculations where the corresponding physical field satisfies the Laplace or
Helmholtz operator. This includes calculations for the effective electrical and heat conductivity,2–11

effective permittivity,12,13 effective permeability,14 and effective elastic constants15 at long wave-
lengths. Eisenstein series can also be found in the static quasi-periodic Green’s function for the
Helmholtz operator.17 For effective medium calculations, the G(m)

n sums are often considered in the
form m = n, reducing them to the conventional or holomorphic Eisenstein series Gn ≡G(n)

n (Ref. 18,
p. 240). Although modern computing resources can directly evaluate the majority of conventional
and phase-modulated Eisenstein series with ease, brute force methods fail for n = 2, when these series
become conditionally convergent. In these instances, the values obtained depend on the method of
summation, which in turn depends on the geometry of the finite lattice chosen.

The issue of evaluating conditionally convergent sums can be managed with careful summation
procedures2,11,19–21 or special function representations.9,10,13 However, many of these special numer-
ical summation techniques only apply to certain lattices, and some of these methods simply mask
the appearance of the conditionally convergent sums that are inherently present. In particular, the
analytic and mathematically rigorous Eisenstein summation method always yields a definitive result
by enforcing a particular order of summation,11,20 but includes a non-physical contribution that can
be difficult to identify and exclude. In the current work, we provide a robust method to regularize
phase-modulated Eisenstein series for all (m, n = 2) orders and for all lattice geometries. This is
achieved by analytically continuing from absolutely convergent sums, thereby enforcing geomet-
ric identities that must be satisfied to ensure physically meaningful results. The simple formula we
obtain alleviates all problems associated with conditional convergence, and drastically simplifies the
procedure for subsequent effective medium calculations over an arbitrary lattice.

Next, we derive expressions to reduce phase-modulated Eisenstein series to products of holo-
morphic Eisenstein series, applicable to orders m > n. In other words, we demonstrate that these
phase-modulated Eisenstein series are generated by the vector space of holomorphic Eisenstein
series and its derivatives. This enables closed-form evaluation of many Eisenstein series over a vari-
ety of high symmetry lattices, which were only previously known numerically for a select few lattice
geometries.8,22,23 The simple procedure is entirely formulaic, reducing to evaluations of the Dedekind
η-function, for which many special values are known,24,25 and many more can be generated using the
celebrated Chowla–Selberg formula.26–28 We thus explicitly evaluate and tabulate phase-modulated
Eisenstein series for a variety of frequently encountered lattices and orders, including condition-
ally convergent orders. For all other orders of phase-modulated Eisenstein series, rapidly convergent
sums are obtained that are applicable to any lattice geometry. In the case of conditionally convergent
orders, all evaluation methods produce results that conform to the order of summation used by the
Eisenstein summation method, which can subsequently be regularized as described above. We utilize
these methods in our analysis of double Schlömilch-type sums Sl ,m ,n, in particular demonstrating that
regularized sums can be added, subtracted, and are well-behaved for all further purposes including
representation of the absolutely convergent Sl ,m ,n.

The second class of sums that we consider, Sl ,m ,n, play an important role in the long-wavelength
representations of the quasi-periodic Green’s function for the Helmholtz operator,29–31 as well as
in band structure and effective index calculations for photonic, phononic, and other periodic struc-
tures.12,16,31 In particular, they can be used to evaluate sums such as a phase-modulated array of
cylindrical harmonic sources over a direct lattice,

SY
l
(
k, k0

)
=

∑′

p

Yl(kRp)eilϕp eiRp ·k0 , (3)

where Y l(z) is a Bessel function of the second kind, Rp = (Rp, ϕp), k is a real constant, and k0
is an arbitrary Bloch vector. The sums Sl ,m ,n are related to (3) via Fourier transform,8,31 and it is
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advantageous to evaluate the absolutely convergent Sl ,m ,n sums rather than the conditionally
convergent (3).

At present, recurrence relations are available to obtain Sl ,m ,n analytically for square lattices.8

We extend these relations to all two-dimensional lattices and use them to obtain general expressions
for Sl ,m ,n in closed form, which are applicable to all orders and lattices. When l � n is even, these
expressions are polynomials in u with regularized G(m)

n as coefficients, whereas for odd l � n, the
double Schlömilch-type sums can only be expressed as an infinite series.8

Finally, we consider the G(m)
n and Sl ,m ,n sums when they are evaluated over displaced point sets.

At present, Eisenstein series and the double Schlömilch-type sums are evaluated over point sets that
are centered about the origin. For the reciprocal lattice, this corresponds to the set of all Γ points
in all Brillouin cells, and for the direct lattice, this corresponds to the origin of all unit cells. The
framework we outline admits closed-form expressions for more complicated lattice geometries, such
as diatomic lattices. It also permits a closed-form asymptotic analysis of band structures at points of
high symmetry other than the Γ point. Although the Eisenstein series and the double Schlömilch-type
sums considered here correspond to the static or quasi-static limit in frequency, the method we present
is general and applies to all lattice sums in two dimensions: we derive multi-set identities to evaluate
sums over sets comprising the high symmetry points of a Bravais lattice. Explicit representations for
square and hexagonal lattices are presented and applied to (1) and (2).

The outline of this paper is as follows. In Sec. II, we provide important definitions, nomenclature,
and representations of the lattices. Section III evaluates G(m)

n over an origin-centered direct lattice
and, in particular, Sec. III A 2 discusses regularization for n = 2. Section IV evaluates Sl ,m ,n over an
origin-centered reciprocal lattice, using the results from Sec. III to provide expressions for all lattices
and applicable orders. Section V treats displaced square and hexagonal lattices, deriving multi-set
identities for G(m)

n and Sl ,m ,n.

II. LATTICE DEFINITIONS

We define an origin-centered 2D lattice in real space as the set of all points

Ω= {p1aê1 + p2bê2 |p1, p2 ∈Z}, (4)

where a and b are the lengths of the unit cell edges, and unit vectors ê1 and ê2 are their directions.
Without loss of generality, ê1 may be oriented to lie along the x-axis. Alternatively, it is convenient
to define a complex plane representation of Ω, by orienting the x-axis and thus ê1 along the real axis
and relating bê2 to a single complex parameter,

τ =
b
a

eiφ , (5)

where φ is the angle between ê1 and ê2. By convention, τ is chosen to lie in the upper half of the
complex plane. The lattice is thus uniquely specified by Ω(τ, a).

The reciprocal lattice of Ω is defined by

Ω=

{
2π
A

(h1bê′1 + h2aê′2)
�����
h1, h2 ∈Z

}
, (6)

where A = ab sin ϕ is the area of the unit cell, and ê′1 and ê′2 are unit reciprocal lattice vectors, chosen
such that ê1 · ê

′
2 = ê2 · ê

′
1 = 0. Since Ω is derived from Ω, it may also be uniquely specified by Ω(τ, a).

For the phase-modulated Eisenstein sums (1), the index p = (p1, p2) runs over all points of the
latticeΩ(τ, 1), with each point given in polar coordinates (Rp, ϕp). For convenience, G(m)

n (τ) is defined
only for a = 1, as a single result is applicable to all similar lattices with appropriate scaling; e.g.,
G(m)

n (i) applies to all square lattices. Its explicit dependence on τ can be revealed by re-expressing
(1) as

G(m)
n (τ)=

∑′

(p1,p2)∈Z2

(p1 + τ∗p2)(m−n)/2

(p1 + τp2)(m+n)/2
, (7)

where τ∗ is the complex conjugate, exposing its similarity to both holomorphic Eisenstein series and
real analytic Eisenstein series. Similarly, the index of cylindrical harmonic functions (2) over the
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reciprocal lattice is given by h = (h1, h2) and runs over Ω(τ, a), containing the points (Kh, ψh) in
polar coordinates.

III. EVALUATION OF PHASE-MODULATED EISENSTEIN SUMS

The sums (1), and the alternative form (7), are closely related to Eisenstein series and can be
treated using associated techniques. By transforming to the Fourier domain, rapidly convergent series
are derived convenient for numerical evaluation, given in Sec. III A 1. Furthermore, using the theory
of modular forms and elliptic functions, closed-form expressions for m > n are available for several
special geometries, including but not limited to the square, hexagonal, 2 : 1 and

√
3 : 1 rectangular

lattices, derived in Sec. III B.
For G(m)

2 , the sums are conditionally convergent, and its value depends critically on summation
order. The non-physical contribution that arises differs for different summation techniques, known
variously as a non-modular contribution or an extraordinary contribution. However, the sum can be
regularized by enforcing the geometric identity

G(m)
n (τ)=

|τ |m−n

τm G(m)
n (−1/τ), (8)

corresponding to a rotation and scaling of the lattice. For n > 2, (8) holds automatically as the sum is
absolutely convergent, which allows the identity to be derived by rearranging the summation indexes
p1 and p2. The conditionally convergent case of n = 2 is regularized in Sec. III A 2 by comparing
with a sum which does obey (8). In conjunction with the rapidly convergent Fourier series derived in
Sec. III A 1, this provides a robust yet simple means of obtaining physically meaningful results.

A. Conversion to Eisenstein series

Eisenstein series are defined by the sum

Gn(τ)≡G(n)
n (τ)≡

∑′

(p1,p2)∈Z2

1
(p1 + τp2)n . (9)

From the theory of modular forms, the double sum can be converted to a Fourier series (Ref. 32,
p. 277, and Ref. 18, p. 241)

Gn(τ)= 2ζ(n) +
2(2iπ)n

(n − 1)!

∞∑
r=1

σn−1(r)e2iπrτ , (10)

where ζ(n) is the Riemann zeta function and σk(r) is the sum of the kth power of the divisors of r,

σk(r)=
∑
d |r

dk . (11)

Alternatively, the result can be expressed as a Lambert series, via (Ref. 32, p. 307, and Ref. 14),
∞∑

r=1

σk(r)qr =

∞∑
r=1

rkqr

1 − qr . (12)

However, we will use the Fourier series exclusively, as it accepts generalizations more readily.

1. Fourier series for phase-modulated Eisenstein series

We now generalize the result (10) to G(m)
n , where m and n are even integers, obtaining a polynomial

expression in Gn(τ) and its derivatives when m > n. We show the derivation explicitly for the case m
= n + 2, from which all other cases follow. Beginning with the definition, we first partition the sum,
evaluating the contribution from the real axis separately, and use symmetry to obtain

G(n+2)
n (τ)=

∑′

(p1,p2)∈Z2

p1 + τ∗p2

(p1 + τp2)n+1
=

∑′

p1∈Z

1
pn

1

+ 2
∞∑

p2=1

∑
p1∈Z

p1 + τ∗p2

(p1 + τp2)n+1
. (13)
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We perform the sum over p1 first, which imposes the Eisenstein summation order of summation.
The first sum in (13) can be recognized as twice the Riemann zeta function, while a Fourier domain
representation is sought for the sum over p1 in the second sum via the Poisson summation formula,∑

q∈Z
f (q)=

∑
r∈Z

f̂ (r), (14)

where the Fourier transform is defined

f̂ (y)=
∫ ∞
−∞

f (x)e−2iπxydx. (15)

Application of (14) to (13) requires consideration of the integral

f̂ (r)=
∫ ∞
−∞

x + c∗

(x + c)k
e−2iπxrdx. (16)

From (13), only the case where the pole of the integrand lies in the lower half plane is needed. For
positive r, the integral is evaluated by selecting a semi-circular contour in the lower half plane and
invoking Cauchy’s residue theorem, yielding

f̂ (r)=
(−2iπ)k−1

(k − 2)!
rk−2e2iπrc − 2i Im(c)

(−2iπ)k

(k − 1)!
rk−1e2iπrc. (17)

Non-positive values of r allow a semi-circular contour in the upper half plane to be selected, which
does not enclose any poles, so the result is zero. This result, known as a Lipschitz summation formula,
has a general form that we later use (Ref. 33 and Ref. 34, p. 76).

The sum then takes the form

G(n+2)
n (τ)= 2ζ(n) + 2

∞∑
p2=1

∞∑
r=1

[
(2iπ)n

(n − 1)!
rn−1e2iπrτp2 + 2i Im(τ)

(2iπ)n+1

n!
rnp2e2iπrτp2

]
. (18)

The double sum can be expanded term by term and converted to a single sum by gathering equal
powers of e2iπτ to give

G(n+2)
n (τ)= 2ζ(n) +

2(2iπ)n

(n − 1)!

∞∑
r=1

σn−1(r)e2iπrτ + 2i Im(τ)
2(2iπ)n+1

n!

∞∑
r=1

rσn−1(r)e2iπrτ . (19)

The first sum, along with the contribution from the real axis, is the Fourier series of the fundamental
Eisenstein series (10), while the second sum is its derivative, yielding the compact result

G(n+2)
n (τ)=Gn(τ) +

2i Im(τ)
n

G′n(τ), (20)

where the prime represents differentiation with respect to the argument. The case m = n + 4 can be
treated by similar means to give

G(n+4)
n (τ)=Gn(τ) +

4i Im(τ)
n

G′n(τ) −
4 Im(τ)2

n(n + 1)
G′′n (τ). (21)

The general case can also be treated by similar means or by using the generalized Lipschitz
summation formula directly, which automates the task of evaluating the residues. Its most convenient
form reads (Ref. 33 and Ref. 34, p. 179)

∞∑
q=−∞

1
(q + c)α(q + c∗)β

=
(−i)α−β(2π)α+β

Γ(α)Γ(β)


Γ(α + β + 1)(4π Im(c))1−α−β

+
∞∑

r=1

Γ(β)rα+β−1U(β, α + β, 4πr Im(c))e2iπrc +
∞∑

r=1

Γ(α)rα+β−1U(α, α + β, 4πr Im(c))e−2iπrc∗

,

(22)
where U(α, β, z) is the Tricomi confluent hypergeometric function. We proceed first for m > n,
corresponding to negative β. Then only the first infinite sum survives, due to the pole Γ(β) in the
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prefactor. Furthermore, an expression in terms of a generalized Laguerre polynomial is possible
[Ref. 35 (13.6.27) and (22.3.9)],

U(−s, β, z)= (−1)ss!L(β−1)
s (z)= (−1)s

s∑
t=0

(
s
t

)
(s + β − 1)!
(t + β − 1)!

(−z)t . (23)

The procedure continues as before, requiring now the general resummation formula,
∞∑

p=1

∞∑
r=1

pαrβqpr =

∞∑
r=1

rβσα−β(r)qr . (24)

Finally, we obtain the general result

G(m)
n (τ)=

(m−n)/2∑
k=0

(2i Im(τ))k
(
(m − n)/2

k

)
(n − 1)!

(n + k − 1)!
∂k

∂τk
Gn(τ), (25)

valid for all m > n, where both m and n are positive even integers. From (10), the Fourier expansion
for the kth derivative of Gn is

∂k

∂τk
Gn(τ)=

2(2iπ)n+k

(n − 1)!

∞∑
r=1

rkσn−1(r)e2iπrτ , (26)

with Gn(τ) itself having the additional constant term in (10).
These provide a numerically convenient means of evaluating G(m)

n (τ), for any lattice τ, and espe-
cially the conditionally convergent G(m)

2 (τ), which can subsequently be regularized by the methods
of Sec. III A 2. The simple form of (25), as a polynomial in Gn(τ) and its derivatives, also serves
as the basis for closed-form evaluations for several special lattices in Sec. III B. The Fourier series
(26) converges as O(rn+k�1qr) as r → ∞ (Ref. 18, p. 260). Note that |q| = |e2iπτ | < 1, and can be
minimized by maximizing Im(τ) via (8). Furthermore, series with convergence worse than O(r5qr)
can be avoided with the aid of recurrence relations (39) and (40), though this is rarely necessary given
that they are rapidly converging series. As expected from an application of the Poisson summation
formula, series which are the slowest to converge over the direct lattice are the fastest to converge in
the Fourier domain.

For completeness, we also provide the Fourier series of G(m)
n (τ) for m < n. Once again, the

confluent hypergeometric function can be expressed as a generalized Laguerre polynomial, by the
use of the additional identity [Ref. 35, (13.1.29)],

U(α, β, z)= z1−βU(α − β + 1, 2 − β, z). (27)

The procedure now yields

G(m)
n (τ)= 2ζ(n) +

(
n − 2
α − 1

)
(−i)mπ

2n−3 Im(τ)n−1
ζ(n − 1)

+
α−1∑
k=0

(−i)mπα−k

22k−m−1 Im(τ)β+k

(
β + k − 1

k

)
1

(α − k − 1)!

∞∑
r=1

1

rβ+k
σn−1(r)e2iπrτ

+
β−1∑
k=0

(−i)mπβ−k

22k+m−1 Im(τ)α+k

(
α + k − 1

k

)
1

(β − k − 1)!

∞∑
r=1

1

rα+k
σn−1(r)e−2iπrτ∗ ,

(28)

where explicitly the variables α = (n + m)/2 and β = (n � m)/2.
Although (28) is still expressed as a polynomial of functions related to Gn(τ), it is of less practical

utility than (25) for two reasons. Firstly, the sum over r is related to the antiderivative of Gn(τ) rather
than its derivative and does not lead to closed-form evaluations by the techniques of Sec. III B. Instead,
alternative number theoretic techniques have been employed by other authors to yield exact results,
whose results we quote in Sec. IV B. Secondly, the case m < n can be summed from its definition
(7) to sufficient accuracy using modern computing resources with little difficulty, as all the sums
are absolutely convergent over the direct lattice. The sole exception is G(0)

2 (τ) which is divergent.
This is reflected in (28), where the ζ(n � 1) term has a simple pole at n = 2, and its residue is in
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accordance with Kronecker’s first limit formula (Ref. 36, p. 13, and Ref. 20, p. 73). In Sec. IV B, a
particular regularization method for this divergent sum based on Kronecker’s second limit formula
is employed.

2. Regularization of conditionally convergent phase-modulated Eisenstein series

As the double sum over the lattice G(m)
2 (τ) is conditionally convergent, so (1) is ill-defined unless

a particular order of summation is enforced. We follow the convention in the modular forms literature,
corresponding to the Eisenstein summation method, of first summing over index p1 and then over
p2. For G2(τ), this produces the value given by its absolutely convergent Fourier series (10) (Ref. 32,
p. 278, and Ref. 20, p. 14), while for a general order G(m)

2 (τ), we obtained (25). However, another
problem persists: the transformation τ→ �1/τ, corresponding to a rotation and a scaling of the lattice,
fails to satisfy the identity (8). On geometrical grounds, this transformation should be equivalent to
scaling by a complex factor, and physically meaningful results for the infinite lattice are only possible
if (8) is obeyed.

Such a series can be regularized, defined by analytical continuation from (7) and taking the limit,

G̃(m)
2 (τ)= lim

s→0+

∑′

(p1,p2)∈Z2

(p1 + τ∗p2)(m−2)/2

(p1 + τp2)(m+2)/2 |p1 + τp2 |
s
. (29)

This is a two-dimensional analog of regularization by the analytical continuation of the Riemann zeta
function (Ref. 37 and Ref. 38, p. 18). The series now transforms in a physical way,

G̃(m)
2 (τ)=

|τ |m−2

τm G̃(m)
2 (−1/τ), (30)

and has physically meaningful values. Hecke’s trick has been used to show that G̃(2)
2 (τ) and G(2)

2 (τ)

differ only by a constant (Ref. 18, p. 242), which we generalize to treat G̃(m)
2 (τ). Thus, (29) never needs

to be explicitly evaluated since the non-physical contribution can easily be identified and subtracted
from (25).

Generalizing Hecke’s trick to G̃(m)
2 (τ) proceeds by retracing the initial steps of Sec. III A 1,

beginning by partitioning the sum (29) as in (13), and applying the Poisson summation formula (14).
As in Sec. III A 1, we show the derivation explicitly only for m = 4 and state the general result. We
thus evaluate an integral similar to (16),

f̂p2 (r)=
∫ ∞
−∞

x + τ∗p2

(x + τp2)3 |x + τp2 |
s
e−2iπxrdx. (31)

For r > 0, the result of the integral becomes identical to (17) in the limit s→ 0+. But, for r = 0, (31)
does not approach 0, which is the corresponding value in (17). To evaluate this additional contribution,
we transform the integral with x→ p2(x Im(τ) � Re(τ)) to give

f̂p2 (0)=
1

(p2 Im(τ))1+s

∫ ∞
−∞

1

(x + i)3+ s
2 (x − i)−1+ s

2
dx. (32)

Two successive partial integrations give

f̂p2 (0)=
1

(p2 Im(τ))1+s

s(s − 2)
(s + 2)(s + 4)

∫ ∞
−∞

1

(x2 + 1)1+ s
2

dx. (33)

Next, the sum over p2 is evaluated,

2
∞∑

p2=1

f̂p2 (0)=
sζ(1 + s)

Im(τ)1+s

2(s − 2)
(s + 2)(s + 4)

∫ ∞
−∞

1

(x2 + 1)1+ s
2

dx. (34)

In the limit s→ 0+, sζ(1 + s) approaches 1, corresponding to the residue of the Riemann zeta function
at its pole, while the integral evaluates to π, yielding the result

G̃(4)
2 (τ)=G(4)

2 (τ) −
π

2 Im(τ)
. (35)
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After some algebraic manipulations, the general result for m greater than 2 by an even integer is

G̃(m)
2 (τ)=G(m)

2 (τ) −
2π

m Im(τ)
. (36)

This identity obtains the regularized G̃(m)
2 (τ) from G(m)

2 (τ), eliminating the non-physical extraordi-
nary contribution from any summation procedure conforming to the Eisenstein summation order,
which includes all results obtained in this paper. Finally, (36) can be combined with (30) to yield a
transformation identity for non-regularized sums,

G(m)
2 (τ)=

|τ |m−2

τm G(m)
2 (−1/τ) +

2π
m Im(τ)

[
1 −
|τ |m

τm

]
. (37)

Further results can be obtained from (37), in conjunction with other identities such as (48), yielding
for example Theorem 1 from Ref. 21.

B. Exact values of phase-modulated Eisenstein series

The procedure for obtaining closed-form solutions of G(m)
n (τ) comprises three steps. The first

step, already performed in Sec. III A 1, was to express the sums as linear combinations of Eisenstein
series and its derivatives (25). Secondly, using derivative and recurrence relations for Eisenstein
series, all results can then be expressed in terms of only three fundamental Eisenstein series. Finally,
results can be converted to combinations of Dedekind η-functions and Weber η-quotients, for which
explicit values are available for many lattices, by the theory of complex multiplication of elliptic
curves.

All integer orders of Gn(τ) and all its derivatives can be reduced to sums and products of G2(τ),
G4(τ), and G6(τ), using basic results from the theory of modular forms. For example, the recurrence
relations for the lowest orders are

7G8 = 3G2
4, 11G10 = 5G4G6, 143G12 = 18G3

4 + 25G2
6, (38)

suppressing the τ dependence for brevity. A general recursion relation is available for all G2k(τ)
(Ref. 39 and Ref. 14, p. 159),

G2k =
3

(2k + 1)(2k − 1)(k − 3)

k−2∑
s=2

(2s − 1)(2k − 2s − 1)G2sG2(k−s). (39)

Meanwhile, G2(τ), G4(τ), and G6(τ) form a closed ring under differentiation,

2iπG′2 = 5G4 − G2
2, iπG′4 = 7G6 − 2G2G4, 7iπG′6 = 30G2

4 − 21G2G6, (40)

obtained by Ramanujan,40 and thus all higher order derivatives can be obtained by successive appli-
cation. These relations are correct when G2(τ) is defined by its absolutely convergent Fourier series
(10), rather than its conditionally convergent sum over the lattice (9).

1. Closed form evaluation of G4(τ) and G6(τ)

Having decomposed G(m)
n (τ) entirely in terms of G2(τ), G4(τ), and G6(τ), it remains only to

evaluate these conventional Eisenstein series for the lattices of interest, τ. While several procedures
are now possible, we opt to further decompose these series in terms of Dedekind η-functions, for
which many special values are known and the Chowla–Selberg formula and its generalizations can
be used to generate many more.25–28

From the theory of elliptic functions, it is known that G4(τ) and G6(τ) are related to the invariants
of the Weierstrass ℘-function, which can be expressed as Jacobi ϑ-functions [Ref. 35 (18.10.15) and
(18.10.17)],

G4(τ)=
π4

90
[ϑ2(0; τ)8 + ϑ3(0; τ)8 + ϑ4(0; τ)8],

33 075G6(τ)2 = 13 500G4(τ)3 − π12[ϑ2(0; τ)ϑ3(0; τ)ϑ4(0; τ)]8.
(41)
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These are related to the Dedekind η-functions via the identities

ϑ2(0; τ)=
2η(2τ)2

η(τ)
, ϑ3(0; τ)=

η
(

1
2 (τ + 1)

)2

η(τ + 1)
, ϑ4(0; τ)=

η( 1
2 τ)2

η(τ)
. (42)

To limit the number of Dedekind η-function values necessary, we also introduce Weber’s η-quotients
(Ref. 24, p. 114),

f(τ)= e−
iπ
24
η
(

1
2 (τ + 1)

)
η(τ)

, f1(τ)=
η( 1

2 τ)

η(τ)
, f2(τ)=

√
2
η(2τ)
η(τ)

, (43)

which are algebraic numbers for all τ =
√
−c, where c is a positive integer. Furthermore, all the

η-quotients are interrelated by the simple formulas

f(τ)f1(τ)f2(τ)=
√

2, f(τ)8 = f1(τ)8 + f2(τ)8. (44)

The ϑ-functions are now expressed as

ϑ2(0; τ)= η(τ)f2(τ)2, ϑ3(0; τ)= η(τ)f(τ)2, ϑ4(0; τ)= η(τ)f1(τ)2. (45)

These relations incorporate the functional equations for η(τ),

η(τ + 1)= e
iπ
12 η(τ), η(−1/τ)=

√
−iτη(τ). (46)

Simpler expressions for G4(τ) and G6(τ) are thus obtained,

G4(τ)=
π4

45
[f(τ)16 − 16f(τ)−8]η(τ)8, 33 075G6(τ)2 = 13 500G4(τ)3 − 256π12η(τ)24, (47)

where the latter is also a consequence of the fact that the vector spaces of modular forms of weight
4 and 6 are one-dimensional, and by equating Fourier expansions (Ref. 32, p. 277, and Ref. 18,
p. 242).

Up to now, the procedure is general to any lattice. We now proceed for the square (τ = i) and
hexagonal (τ = (1 +

√
3i)/2) lattices, duplicating the well-known values of G4(i) and G6(eiπ /3).41

We also treat the rectangular versions of these lattices (τ = 2i,
√

3i), where τ = 2i is constructed by
doubling one of the two lattice vectors. We remark that the equivalence of certain lattices, such as
τ = 1 +

√
3i and τ =

√
3i, is a consequence of the periodicity in τ,

G(m)
n (τ + 1)=G(m)

n (τ), (48)

for all τ. This corresponds to translating each row of the lattice by one lattice vector horizontally,
yielding an identical lattice.

Only two fundamental values of η(τ) are needed for all lattices considered,

η(i)=
Γ( 1

4 )

2π3/4
, η(

√
3i)=

31/8Γ( 1
3 )3/2

24/3π
, (49)

along with the values of η-quotients given by Weber,

f(i)= 21/4, f(
√

3i)= 21/3. (50)

Then the other relevant values of η(τ) can be deduced using a combination of (43), (44), and (46),

η(2i)=
Γ( 1

4 )

211/8π3/4
, η(eiπ/3)= eiπ/24 31/8Γ( 1

3 )3/2

2π
(51)

and

f(2i)= (4 + 3
√

2)1/8, f(eiπ/3)= 21/6. (52)

By (47), this yields all values of G4(τ) and G6(τ) provided in Table I.
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TABLE I. Exact values of some G(m)
n for square, hexagonal, and rectangular lattices. Where two terms appear, the second

term is the non-physical extraordinary contribution. Regularization of these results by (36) amounts to simply neglecting this
second term, as demonstrated when applied to (95). For rectangular lattices, values for the opposite aspect ratio can be derived
using (8) or using (37) if an extraordinary contribution is present.

G2 ≡G(2)
2 G4 ≡G(4)

4 G(4)
2 G6 ≡G(6)

6 G(6)
4 G(6)

2

τ = i 0 + π
Γ( 1

4 )8

960π2

Γ( 1
4 )8

384π3 + π
2 0 0 0 + π

3

τ = 2i
Γ( 1

4 )4

32π + π
2

11Γ( 1
4 )8

15 360π2

Γ( 1
4 )8

384π3 + π
4

Γ( 1
4 )12

81 920π3

Γ( 1
4 )12

24 576π4

Γ( 1
4 )12

6144π5 + π
6

τ = eiπ /3 0 + 2π√
3

0 0 + π√
3

Γ( 1
3 )18

8960π6

√
3Γ( 1

3 )18

5120π7

Γ( 1
3 )18

1024π8 + 2π
3
√

3

τ =
√

3i
Γ( 1

3 )6

16·22/3π2 + π√
3

Γ( 1
3 )12

512·21/3π4

√
3Γ( 1

3 )12

256·21/3π5 + π

2
√

3

11Γ( 1
3 )18

28 6720π6

3
√

3Γ( 1
3 )18

40 960π7

Γ( 1
3 )18

2048π8 + π

3
√

3

2. Closed form evaluation of G2(τ)

G2(τ) can be expressed as the logarithmic derivative of η(τ) (Ref. 32, p. 307, and Ref. 18,
p. 243),

G2(τ)=−4iπ
η ′(τ)
η(τ)

, (53)

where, again, G2(τ) is defined via its Fourier series (10). However, neither G2(τ) nor η ′(τ) are modular
forms, and fewer theoretical tools are available to evaluate η ′(τ). Instead, we resort to a case-by-case
treatment of G2(τ) for the lattices of interest. For the square and hexagonal lattices, G2(τ) would be
zero by symmetry, but these values are non-zero due to the non-modular contribution. Thus, they can
be derived from (36), and their values are displayed in Table I. These agree with values previously
reported in the literature.3,14

We focus attention on the last remaining values of interest, G2(2i) and G2(
√

3i), exploiting the
fact that G2(τ) � sG2(sτ) is a modular form on a subset of the integers. In particular,

ϑ3(0; τ)4 =−
1

π2
[G2(τ/2) − 4G2(2τ)], (54)

an identity used to prove the four squares theorem (Ref. 32, p. 305, and Ref. 18, p. 249). Using (37),
it immediately follows that

G2(2i)=
π2

8
ϑ4

3(0, i) +
π

2
=
Γ( 1

4 )4

32π
+
π

2
, (55)

which was evaluated using (45). Intriguingly, (54) can also be employed to evaluate G2(
√

3i), utilizing
both (37) and (48) to obtain

G2(2eiπ/3)=
π2

2(3 +
√

3i)
ϑ4

3(0, eiπ/3) +
π
√

3
=
Γ( 1

3 )6

16 · 22/3π2
+

π
√

3
. (56)

These exact values complete the procedure required to evaluate the exact values in Table I, which
compare with previously obtained numerical values.3,14,15,17,42 Along with the values for G4(τ) and
G6(τ) in Table I, values of G2k(τ) and all its derivatives can be obtained using the recurrence relation
(39) and Ramanujan’s derivative identities (40), thus evaluating (25) in closed form. Results for all
lattices where Dedekind η-function evaluations are available can similarly be deduced for all even
integers m and n, where m > n.

IV. EVALUATION OF DOUBLE SCHLÖMILCH-TYPE SUMS

The results of Sec. III are now applied to obtain (2) over the lattice (6),

Sl,m,n(u; τ, a)=
∑′

h

Jl(Khu)
Kn

h

eimψh , (57)
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corresponding to all the Γ points in each Brillouin zone, excluding the origin. The other high symmetry
points will be considered later in Sec. V. When l � n is even, Sl ,m ,n(u; τ, a) can be expressed as a
terminating polynomial in u, with G(m)

n as coefficients.8 When l � n is odd, Sl ,m ,n(u; τ, a) must instead
by expressed as an infinite series. Fortunately, even l � n is the most commonly encountered case, and
is the only case we consider here. Furthermore, only even m are considered, as the sum is identically
zero for any lattice centered at Γ when m is odd.

A convenient feature of Sl ,m ,n(u; τ, a) is that all orders (l, n) of a given m are linked by recurrence
relations. Thus, the strategy for evaluating all (l, m, n) begins by finding an expression for a particular
(l, n) for each m, and then successively applying the recurrence relations.

A. Recurrence relations

Bessel functions obey a set of recurrence relations which link differing orders, yielding recurrence
relations derived by Nicorovici et al. for square lattices.8 Due to their importance, we restate these
results in the present notation,

ulSl−1,m,n−1(u; τ, a)= ∂u[ulSl,m,n(u; τ, a)], (58)

u−lSl+1,m,n−1(u; τ, a)=−∂u[u−lSl,m,n(u; τ, a)], (59)

u1+lSl+1,m,n+1(u; τ, a)=
∫ u

0
v1+lSl,m,n(v; τ, a) dv , (60)

u1−lSl−1,m,n+1(u; τ, a)=
im

2l−1(l − 1)!

(
A

2πa

)n−l+2

G(m)
n−l+2(τ) −

∫ u

0
v1−lSl,m,n(v; τ, a) dv . (61)

Only (61) depends on the lattice and thus requires generalization to general lattices. This begins with∫ a

0
x−l+1Jl(bx)dx =

bl−2

2l−1(l − 1)!
− a−l+1 Jl−1(ba)

b
, (62)

where a and b are arbitrary constants. Manipulating the identity gives∫ u

0
v1−l

∑′

h

Jl(Khv)
Kn

h

eimψh dv =
1

2l−1(l − 1)!

∑′

h

eimψh

Kn−l+2
h

− u1−l
∑′

h

Jl−1(Khu)

Kn+1
h

eimψh . (63)

The sums are related to Sl ,m ,n(u; τ, a) and G(m)
n (τ) but summed over the reciprocal lattice. The

geometrical relationship between direct (4) and reciprocal (6) lattices then yields (61).

B. Angle independent order (m = 0)

The case m = 0 requires special treatment as it would otherwise feature divergent G(0)
2 (τ) sums, and

its regularization is considered in this section. We follow Nicorovici et al.,8 generalizing expressions
for Sl ,0,n(u; τ, a) to an arbitrary lattice Ω(τ, a). The procedure begins with S0,0,2(u; τ, a), which can
be obtained from Kronecker’s second limit formula (Ref. 36, p. 28, and Ref. 20, p. 73) which was
rederived by Glasser and Stremler.22,23 It reads∑′

h

eiKh ·u

K2
h

=
u2

4
(1 − cos 2ϕ) −

A
6π

log 2 −
A
2π

log
������

ϑ1(z/a; τ)

[ϑ′1(0; τ)]1/3

������
, (64)

where Kh = (Kh, ψh). Furthermore, u= xx̂ + yŷ is an arbitrary vector in the unit cell, z = x + iy is
its complex representation, and ϕ is its complex angle. The Jacobi ϑ1-function and its derivative
are defined in concordance with Ref. 43 (p. 263). The desired identity follows by considering only
the angle independent terms of (64) to extract S0,0,2(u; τ, a). The Jacobi–Anger identity allows the
summand to be cast in terms of Bessel functions,

eiKh ·u =

∞∑
l=−∞

ilJl(Khu)eil(ϕ−ψh). (65)
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Meanwhile, the logarithm of the ϑ1-function is expanded as an asymptotic series, for which the real
part reads

log |ϑ1(z/a; τ)| = log u + log

(
π |ϑ′1(0; τ)|

a

)
+

1
6

(
π

a

)2�����
ϑ′′′1 (0; τ)

ϑ′1(0; τ)

�����
u2 cos(2ϕ + θτ) + · · · , (66)

where θτ is the argument of ϑ′′′1 (0; τ)/ϑ′1(0; τ), which depends only on τ. Higher order terms of the
asymptotic series all vary as zs, for which the real part varies as us cos(sϕ).

Dropping all terms that depend on ϕ from (64), we obtain

S0,0,2(u; τ, a)=−
A
2π


log(u) + log*.

,

2π���η(τ)2���
a

+/
-


+

u2

4
, (67)

where the Dedekind η-function is introduced via

ϑ′1(0; τ)= 2η(τ)3. (68)

Exact results are possible using special values of η(τ), given in (49) and (51). Otherwise, it may
be numerically evaluated by a variety of efficient methods, such as by (68) or by its Fourier series
expansion,

log(η(τ))=
iπτ
12
−

∞∑
r=1

1
r
σ1(r)e2iπrτ . (69)

Comparing (69) with (10), we observe that the log |η(τ)| term plays the role of the divergent G(0)
2 (τ)

sum.
We note that an alternative but similar derivation of (67) is possible from Kronecker’s first limit

theorem, which we sketch. First expand the real analytic Eisenstein series using the degenerate form
of the Jacobi-Anger expansion, 1 = J0(z) + 2J2(z) + 2J4(z) + · · · . This converts the Eisenstein series
into an infinite sum of double Schlömilch-type sums, S0,0,2 + 2S2,0,2 + 2S4,0,2 + · · · . The sums S2,0,2,
S4,0,2, . . . can all be independently obtained from the Poisson summation formula, (84). Except for
S2,0,2, they each evaluate to a constant, forming members of a harmonic series, generating an infinity
associated with a singularity of order 1. This allows the non-singular parts of Kronecker’s first limit
formula to be equated, yielding S0,0,2 and thus (67).

Expressions for all other Sl ,0,n follow from recurrence relations (58)–(61), and do not require
special treatment, since all additional terms feature only absolutely convergent sums. For orders
l < n, expressions have the common form

Sl,0,n(u; τ, a)=
(n−l)/2∑

k=2

(
A
2π

)2k

B2k(l, n)un−2k
G(0)

2k (τ)

a2k

−
A
2π

B2(l, n)un−2


log(u) + CL(l, n) + log*.

,

2π���η(τ)2���
a

+/
-


−

1
8

C0(l, n)un. (70)

If (n � l)/2 < 2, then the first sum does not contribute. For orders l > n, Sl ,m ,n(u; τ, a) has a special
form due to the logarithmic term originating from (67). The orders l = n have the common form

Sl,0,n(u; τ, a)=
A
2π

BL(l, n)un−2 −
1
8

C0(l, n)un. (71)

Finally, for orders l > n, the sums are given by

Sl,0,n(u; τ, a)=
A
2π

BL(l, n)un−2. (72)

The coefficients B2k(l, n) and C2k(l, n) are derived from successive application of the recurrence
relations, with values
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B2k(l, n)=
(−1)k in−l22k−n

( n+l
2 − k)!( n−l

2 − k)!
, (73)

C2k(l, n)=
in−l22−nk!(k + 2)!

( n+l
2 + k)!( n−l

2 + k)!
. (74)

The coefficient B2k is undefined if n � l < 2k and C2k is undefined if l � n < 2k. However, these
undefined orders never contribute to (70) or to any subsequent expression which uses (73) and
(74). Alternatively, if the factorials in (73) and (74) are rewritten using gamma functions, these
expressions will automatically produce a zero result whenever appropriate. The remaining coefficients
are associated with integration and differentiation of the logarithmic term, with

BL(l, n)=
( l−n

2 )!

2n−1( l+n
2 − 1)!

(75)

and

CL(l, n)=−
1
2

[
H

(
n + l

2
− 1

)
+ H

(
n − l

2
− 1

)]
, (76)

where H(s) is the sth harmonic number, given by

H(s)=
s∑

t=1

1
t

. (77)

An example of the simple form of (71) for l = n is

S2,0,2(u, τ, a)=
A
4π
−

u2

8
. (78)

We also give an example for l < n,

S1,0,5(u, τ, a)=

(
A
2π

)4 u
2

G(0)
4 (τ)

a4
+

A
2π

u3

16


log(u) −

5
4

+ log*.
,

2π���η(τ)2���
a

+/
-


−

u5

384
. (79)

The phase-modulated Eisenstein sums G(0)
2s (τ) are Epstein zeta functions, or more generally real

analytic Eisenstein series, and have been evaluated exactly in terms of Dirichlet L-series extending
back to the work of Lorenz and later Hecke (Refs. 44 and 45, p. 95),

G(0)
2s (i)= 4ζ(s)β(s), G(0)

2s (2i)= 2(1 − 2−s + 21−2s)ζ(s)β(s), (80)

G(0)
2s (eiπ/3)= 6ζ(s)g(s), G(0)

2s (
√

3i)= 2(1 + 21−2s)ζ(s)g(s). (81)

Here, ζ(s) is the Riemann zeta function, β(s) is the Dirichlet beta function, and g(s) is one of the next
most simple Dirichlet L-series,

g(s)= 1 − 2−s + 4−s − 5−s + 7−s . . . . (82)

Further results for a wide variety of lattices have been tabulated (Ref. 1, p. 60). While many efficient
series and integral representations are available for these Dirichlet L-series, in practice exact values
or decimal approximations are well known for small integer s. For example,

λ ≡ β(2)= 0.915 965 594 177 219 . . . , g(2)= 0.781 302 412 896 486 . . . , (83)

where λ is the Catalan constant. Note that by using the general symmetry property obeyed by all
absolutely convergent G(m)

n , given in (8), values for opposite aspect ratios can be obtained.

C. Angle dependent orders (m , 0)

Expressions for Sl ,m ,n(u; τ, a), where m is a non-zero even integer, can be obtained from a unified
procedure. Divergent Eisenstein sums do not feature as in m = 0, only conditionally convergent sums,
which can all be treated using the results of Sec. III A 2. Again, expressions for square lattices were
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derived by Nicorovici et al. using the Poisson summation formula,8 and its generalization to arbitrary
lattices is stated briefly. This begins with∑

h

f̂ (Kh)=
A

(2π)2

∑
p

f (Rp), (84)

where the Fourier transform is defined as

f (Rp)=
∫

f̂ (K)e−iK ·Rp dK. (85)

Expanding the exponential using the Jacobi–Anger identity and inserting the summand of (2) as f̂ (K)
yields

f (Rp)= 2πeimϕp (−i)m
∫ ∞

0

1

Kn−1
Jl(Ku)Jm(KRp) dK , (86)

simplified using the orthogonality of eimψ angular terms. The integral is a Weber–Schafheitlin integral,
which has a result in terms of the hypergeometric series (Ref. 35, p.11.4.34)

ul(m − t − 1)!

2n−1Rm−2t
p l!t!

2F1*
,
−t, m − t; l + 1;

(
u

Rp

)2
+
-
, (87)

introducing the variable � 2t = l �m � n + 2. For non-negative t, the hypergeometric series terminates,
generating a polynomial of order t, to yield

Sl,m,n(u; τ, a)=
A
2π

(−i)m
∑

p

eimθp
1

2n−1

t∑
s=0

(−1)s (m − t + s − 1)!
s!(t − s)!(l + s)!

u2s+l

Rm−2t+2s
p

=
A
π

(−i)m

2n

t∑
s=0

(−1)s (m − t + s − 1)!
s!(t − s)!(l + s)!

u2s+l

am−2t+2s
G(m)

m−2t+2s(τ).

(88)

The formula (88) does not hold for all values of (l, m, n), and fails for negative t for example.
Nevertheless, all orders can be generated beginning with S2,m ,2(u; τ, a) and exploiting the recurrence
relations (58)–(61). Thus, we define

S2,m,2(u; τ, a)=
imA
4π

m/2−1∑
k=0

Dk(m)
u2k+2

a2k+2
G(m)

2k+2(τ), (89)

where

Dk(m)= (−1)k ( m
2 + k)!

k!(k + 2)!( m
2 − k − 1)!

. (90)

For m = 2, 4, this evaluates to

S2,2,2(u; τ, a)=−
A
8π

u2 G(2)
2 (τ)

a2
, S2,4,2(u; τ, a)=

A
4π


u2 G(4)

2 (τ)

a2
− u4 G(4)

4 (τ)

a4


, (91)

while for m = 6,

S2,6,2(u; τ, a)=−
A
8π


3u2 G(6)

2 (τ)

a2
− 8u4 G(6)

4 (τ)

a4
+ 5u6

G(6)
6 (τ)

a6


. (92)

One application of recurrence relation (61) yields for example

S1,4,3(u; τ, a)=

(
A
2π

)2 u
2

G(4)
2 (τ)

a2
+

A
4π


−

u3

2

G(4)
2 (τ)

a2
+

u5

4

G(4)
4 (τ)

a4


, (93)

and subsequently applying (60) yields

S2,4,4(u; τ, a)=

(
A
2π

)2 u2

8

G(4)
2 (τ)

a2
+

A
4π


−

u4

12

G(4)
2 (τ)

a2
+

u6

32

G(4)
4 (τ)

a4


. (94)
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Successive application of the recurrence relations produces the general form

Sl,m,n(u; τ, a)= im
(n−l)/2∑

k=1

(
A
2π

)2k

B2k(l, n)un−2k
G(m)

2k (τ)

a2k

+
imA
4π

m/2−1∑
k=max{0,(l−n)/2}

C2k(l, n)Dk(m)un+2k
G(m)

2k+2(τ)

a2k+2
,

(95)

where the coefficients B2k(l, n), C2k(l, n), and Dk(m) are given in (73), (74), and (90), respectively.
The lower limit of the second sum is (l � n)/2, but cannot be negative. Again, if (n � l)/2 < 1, the first
sum does not contribute, while the second sum also ceases to contribute if (l � n)/2 > m/2 � 1 and
Sl ,m ,n(u; τ, a) is identically zero.

The most commonly encountered orders of Sl ,m ,n(u; τ, a) are when n − l 6m. Then, (95) only
contains orders of G(m)

n with m > n. The efficient methods of Sec. III A 1 may then be used to evaluate
(95), specifically (25). Furthermore, for the square, hexagonal, (2 : 1) and (

√
3 : 1) rectangular lattices,

the exact results of Table I apply, leading to entirely closed-form expressions for Sl ,m ,n(u; τ, a). When
n � l > m, sums G(m)

n (τ) of orders m < n begin to appear, for which numerical results can be generated
by (28). Note that even though Sl ,m ,n(u; τ, a) are absolutely convergent over the reciprocal lattice, they
are expressed in terms of G(m)

2 (τ) which are conditionally convergent, which contain non-physical
extraordinary contributions. Correct values are obtained for Sl ,m ,n(u; τ, a) only when the regularized
versions are used G̃(m)

2 (τ), derived using (36).

V. EVALUATION OVER DISPLACED LATTICES

In Sec. IV, results were presented for the Bessel-modulated lattice sums

Sl,m,n(u; τ, a)=
∑′

h

Jl(Khu)
Kn

h

eimψh (96)

and were evaluated over two-dimensional lattices Ω centered on the origin in reciprocal space such
that each lattice point corresponds to the center of a different Brillouin zone. However, Sl ,m ,n can be
evaluated over any lattice, and instead of considering the lattice of all Γ points, we now evaluate over
the lattice of all M points, for example. This can be achieved in several ways; the first is to replace Kh

with Kh + k0 and ψh with arg(Kh + k0) in (96), where k0 is a vector which denotes a high symmetry
point in the first Brillouin zone. Equivalently, we can leave the summand unchanged and modify the
underlying point set Ω, as considered here.

We proceed by first detaching from the typical interpretation of an origin-centered lattice as
comprising the set of all Γ points. This same set of points can also be regarded as the union of high
symmetry points of a different lattice; for example, an origin-centered square lattice in reciprocal
space is the union of all the Γ, X, Y, and M points of a square lattice with double the period, as shown
in Fig. 1(a). Another example is that the reciprocal lattice of a rectangular arrayΩ(i/2, 2a) comprises
the Γ and X points of the square lattice Ω(i, a). Thus, it is possible to construct an array comprising
just the X, Y, or M points of a square reciprocal lattice using various origin-centered square and
rectangular lattices.

Using the principles described, we obtain multi-set expressions to enable the evaluation of dis-
placed lattice sums in terms of the sums already evaluated in Sec. IV. Key to their validity is the
regularization of divergent and conditionally convergent terms. We present expressions for all high
symmetry point displacements of square and hexagonal lattices, although this method can be extended
to consider other Bravais lattices. We also apply this method to sums over the real lattice, such
as the phase-modulated Eisenstein series G(m)

n , and so all of the expressions in this section which
introduce an offset to the reciprocal lattice can be used to introduce an offset to the direct lattice
instead.
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FIG. 1. (a) Set of points for square lattice of period a (open circles; Γa) and period 2a (filled circles; Γ2a), in reciprocal space
with Brillouin zones overlaid. The Γ2a set comprises the union of all Γ, X, Y, and M points for a lattice of period a (denoted
with subscript a). Additional filled circles are omitted in neighboring cells. (b) Set of all Γ (open circles) and M (colored
circles) points for the hexagonal lattice, with Brillouin zones overlaid. The M points are members of the lattice with twice the
period and comprise the union of origin-centered hexagonal lattices translated by m1 (green), m2 (blue), and m3 (yellow).

A. Square lattices

For a square lattice, the set of all X points can be explicitly written as

Ω
X (i, a)=

{
2π

(
h1

a
,

h2

a

)
+

(
π

a
, 0

) �����
h1, h2 ∈Z

}
. (97)

The above set is contained within Ω(i/2, 2a), and so (97) can be represented by simply subtracting
extraneous points corresponding to the original undisplaced points via

Ω
X (i, a)=Ω(i/2, 2a) −Ω(i, a). (98)

Here, the set of points on the left-hand side is equal to the addition and subtraction, counting mul-
tiplicity, of sets of points on the right-hand side. A similar treatment for the Y point set gives

Ω
Y (i, a)=Ω(2i, a) −Ω(i, a). (99)

As mentioned, the M points of a square lattice of period a are contained in the Γ points of a square
lattice of period 2a. The set of extraneous points are now all the X, Y, and the original Γ points, which
may be subtracted through the relation

Ω
M (i, a)=Ω(i, 2a) −ΩX (i, a) −ΩY (i, a) −Ω(i, a)

=Ω(i, 2a) −Ω(i/2, 2a) +Ω(i, a) −Ω(2i, a).
(100)

To demonstrate the use of these identities, we present the general form for Sl ,4,n overΩM (i, a), denoted
by SM

l,4,n,

SM
l,4,n(u)=

(n−l)/2∑
k=1

B2k(l, n)un−2k
( a

2π

)2k [(
22k + 1

)
G(4)

2k (i) −
(
22k + 2−2k

)
G(4)

2k (2i)
]

+
1

4π

1∑
k=max{0,(l−n)/2}

C2k(l, n)Dk(4)un+2k 1

(2a)2k

[
2G(4)

2k+2(i) −
(
21+2k + 2−1

)
G(4)

2k+2(2i)
]
,

(101)

which follows from (95) and (100), and where the regularized forms for G(m)
n must be used. For a

particular pair (l, n) = (1, 5), we obtain

SM
1,4,5(u)= Γ

(
1
4

)8
[
−

a4u

3 · 211π6
+

a2u3

213π5
−

u5

9 · 212π4
+

u7

15 · 215a2π3

]
, (102)
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after using the closed-form expressions for G(4)
2,4 in Table I as well as the identities (8) and (37). Finally,

we note that Sl ,m ,n is vanishing when m is not an integer multiple of 4 and is evaluated over lattices
with 4-fold symmetry such as origin-centered sets or over the set of all M points. In these instances,
SX,Y

l,m,n is identical to a rectangular lattice sum, following (98) and (99).

B. Hexagonal lattices

For the hexagonal lattice, the treatment is not as straightforward. In the square lattice, there
are just as many Γ points as X, Y, or M points, across the whole reciprocal space. However for the
hexagonal lattice, there are 3 times as many M points and twice as many K points as Γ points. This
is shown in Fig. 1(b) where there are three different subsets of M points that can each be obtained by

three different translations of Γ points. These translations are given by m1 =

(
− πa , π√

3a

)
, m2 =

(
0, 2π√

3a

)
,

and m3 =

(
π
a , π√

3a

)
and their respective subsets are

Ω
Mj

(eiπ/3, a)=

{
2π
√

3a

(√
3h1, 2h2 − h1

)
+ mj

�����
h1, h2 ∈Z

}
. (103)

The set of all M points is the union of all these subsets

Ω
M

(eiπ/3, a)=Ω
M1 (eiπ/3, a) +Ω

M2 (eiπ/3, a) +Ω
M3 (eiπ/3, a). (104)

Similarly, for the K point set, we use the translation vectors k1 =

(
− 2π

3a , 2π√
3a

)
and k2 =

(
2π
3a , 2π√

3a

)
and

define the sets

Ω
Kj

(eiπ/3, a)=

{
2π
√

3a

(√
3h1, 2h2 − h1

)
+ kj

�����
h1, h2 ∈Z

}
, (105)

Ω
K

(eiπ/3, a)=Ω
K1 (eiπ/3, a) +Ω

K2 (eiπ/3, a). (106)

Since the set of M points are contained in a lattice with twice the lattice constant, we may apply the
same geometric principles as for the square lattice to obtain

Ω
M (eiπ/3, a)=Ω(eiπ/3, 2a) −Ω(eiπ/3, a). (107)

Meanwhile, the set of all Γ and K points only coincide if the Γ points are rotated and scaled,

Ω
K (eiπ/3, a)=C4Ω(eiπ/3,

√
3a) −Ω(eiπ/3, a), (108)

where C4 denotes rotation of the set of points by π/2. Note that this requires lifting the restriction
imposed on (96) of orienting ê1 along the x-axis. However, its effect on (96) can be determined by
the replacement ψh → ψh + π/2, so all terms of the lattice attract a global phase, with Sl ,m ,n 7→

eimπ /2Sl ,m ,n.
When the order m of the sum is an integer multiple of 6, the sum evaluated over each of the subsets

in (103) is identical, so (107) can be used to obtain each of the identical terms on the right-hand side
of (104), and similarly for (106). If m is not a multiple of 6, then this symmetry cannot be exploited,
so explicit expressions are required for the subsets

Ω
M1 (eiπ/3, a)=C3Ω

M2 (eiπ/3, a),

Ω
M2 (eiπ/3, a)=Ω(

√
3i, a) −Ω(eiπ/3, a),

Ω
M3 (eiπ/3, a)=C−3Ω

M2 (eiπ/3, a),

(109)

where C±3 denotes a rotation by ±π/3, meaning that the corresponding Sl ,m ,n term collects a phase

factor of e±imπ /3. Meanwhile, theΩ
K1 (eiπ/3, a) andΩ

K2 (eiπ/3, a) subsets cannot be individually eval-
uated using origin-centered sums because they lack the requisite 2-fold symmetry about the origin
and so do not qualify as origin-centered lattices.
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An example of Sl ,m ,n over the M points of a hexagonal array is the general form for m = 0, given
by

SM
l,0,n(u)=

(n−l)/2∑
k=2

(
1

2π

)2k

B2k(l, n)un−2k
(√

3a
)2k

(
1 −

1

22k

)
G(0)

2k

(
eiπ/3

)
−

3
√

3a2

4π
B2(l, n)un−2


log

( u

24/3

)
+ CL(l, n) + log*

,

31/4Γ( 1
3 )3

2πa
+
-


,

(110)

which for a particular (l, n) pair takes the form

SM
2,0,6(u)=

135a4u2g(2)

2048π2
−

17a2u4

512
√

3π
+

√
3a2u4

128π
log

( u

24/3

)
+

3a2u4

128
√

3π
log*

,

31/4Γ( 1
3 )3

2πa
+
-
, (111)

where g(2) is defined in (83).

C. Evaluation of G(m)
n (τ) over displaced point sets

Results for the phase-modulated Eisenstein series

G(m)
n (τ)=

∑′

p

e−imϕp

Rn
p

(112)

were presented in Sec. III for a two-dimensional real lattice Ω centered about the origin. Following
(96), we relax the restriction that (112) be evaluated over an origin-centered lattice and consider
sets of Wyckoff positions over all direct lattice cells. Wyckoff positions are points of high symmetry
in the direct lattice, corresponding to coordinates in the unit cell which possess a multiplicity and
symmetry, and specify where additional coordinates must be located in the unit cell so that the
symmetry of the lattice is preserved. Figure 2 shows the four Wyckoff positions for a square lattice,
denoted by space group p2: W a = (0, 0), Wb = (0, a/2), W c = (a/2, 0), and Wd = (a/2, a/2), where
a is the period. We remark that the lattice given by the union of the ΩWa (i, a) and ΩWd (i, a) lattices
constitutes a diatomic lattice, enabling lattice sums to be evaluated over each of the two constituents
separately.

To demonstrate that the multi-set identities for the reciprocal lattice also extend to the real lattice,
we follow the procedure outlined in Sec. V A and present the corresponding expression to (100),

FIG. 2. An outline of the square two-dimensional direct lattice Ω(i, a) comprising the origin-centered coordinates Wa (red
circles), where solid lines denote the edges of each unit cell. Also shown is the set of all Wyckoff positions Wd (blue circles),
which is equivalent to a translation of the set of Wa points by (a/2, a/2). The high symmetry points Wb (solid circles) and Wc
(open circles) are also indicated at the edge of the fundamental cell.
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which takes the form

Ω
Wd (i, a)=

{
a(p1, p2) +

(a
2

,
a
2

) ����p1, p2 ∈Z
}

=Ω(i, a/2) +Ω(i, a) −Ω(i/2, a) −Ω(2i, a/2),
(113)

where, in contrast to the reciprocal lattice, the set of W a, Wb, and W c points of a square lattice are
contained in the square direct lattice of half the period, instead of double the period of the reciprocal
lattice. Using the values of Table I and the multi-set identity (113), we obtain the two following
closed-form representations:

G(4),Wd
4 (i)=−

Γ( 1
4 )8

192π2
, G(4),Wd

2 (i)=−
Γ( 1

4 )8

128π3
, (114)

where the expression for G(4),Wd
2 (i) is significant because it is conditionally convergent and cannot be

obtained by direct summation. Here, the use of regularized sums is crucial to the success of (113).

VI. SUMMARY

We treat Eisenstein series in Sec. III, obtaining a general formula (28) to evaluate phase-
modulated Eisenstein series G(m)

n , applicable to all lattices and all even orders m with n > 2. The
result is given as a Fourier series and exhibits rapid numerical convergence. In the special case
of m > n, this formula converts phase-modulated Eisenstein series into derivatives of conventional
holomorphic Eisenstein series, (25), which may subsequently be converted entirely into products of
holomorphic Eisenstein series Gk(τ) using Ramanujan’s derivative identities (40) and the recursion
relation (39). This permits closed-form evaluations for all orders m > n over many high symmetry
lattices via the many known special values of the Dedekind η-function, in a procedure described in
Sec. III B. We perform this procedure to obtain closed-form results for several important lattices, and
these are displayed in Table I.

For conditionally convergent orders G(m)
2 , all of our evaluation methods yield results which may

be regularized to give physically meaningful results. The summation order we impose conforms
to the Eisenstein summation method, which is known to include a non-physical contribution. In
Sec. III A 2, we identify this component by comparing G(m)

2 to an absolutely convergent sum that
obeys the necessary geometric identities, analytically continued to the conditionally convergent case.
This yields a simple formula (36) which allows the non-physical contribution to be subtracted,
thereby regularizing all results conforming to the Eisenstein summation order, including (28), (25),
and Table I.

In Sec. IV, we apply these results for phase-modulated Eisenstein series to evaluate the double
Schlömilch-type sums Sl ,m ,n, the two being related by Poisson summation formula. For orders with
angular variation (m , 0), we obtain a result applicable to all valid orders, (95). This demonstrates
the success of the regularization procedures, as Sl ,m ,n have unambiguous values by virtue of their
absolute convergence, which can be validated by direct summation, yet Sl ,m ,n are expressed in terms
of conditionally convergent Eisenstein series. The angular invariant Sl ,0,n feature a divergent sum,
which is regularized using Kronecker’s second limit formula. The general result for orders l < n
is given by (70). For the remaining orders, two special forms exist due to the regularization of the
divergent sum, (71) and (72).

Finally, in Sec. V, we derive identities that express G(m)
n and Sl ,m ,n sums over displaced lattices

entirely in terms of the origin-centered lattices of Secs. III and IV. We consider high symmetry
displacements of square reciprocal lattices in Sec. V A, presenting identities for the lattices of all
X points (98), Y points (99), and M points (100). The hexagonal lattice is treated in Sec. V B, with
identities for the K points (108) and M points (107). The set of all hexagonal M points can be further
decomposed into its constituent sublattices (109), but not the K points since the sublattices lack
sufficient symmetry. To demonstrate that our method applies to direct lattices as well as reciprocal
lattices, we also present an identity for the direct square lattice in (113).
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SUPPLEMENTARY MATERIAL

See supplementary material for a MATLAB implementation of (28).
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